Problem 29.29

NOTE: This is a VERY obscure problem.

A beam electrons accelerate through 50 kV. It's deflected while moving through a B-fld that acts over .01 meters. The deflection motivates the beam to hit a screen that is .1 meters away a distance equal to .25 meters from the center-line (i.e., the undeflected path). How large must the B-fld be to do that?

We know that: $qvB\sin 90^\circ = m\frac{v^2}{r}$

$$\Rightarrow B = \frac{mv}{qr}$$

undeflected path s = .25 mscreen L = .1 m d = .01 m $V_{+} = 50 \text{ kV}$ acceleration $V_{-} = 0$ plates

To use this, we need to use the cons. of energy to get "v" and some exotic geometry to determine the radius "r" of the beam's magnetic-field-deflected path.

1.)

V = 0

How so? From the .1 meter by .25 meter triangle (see sketch), we can write:

$$\theta = \tan^{-1} \left(\frac{.25}{.1} \right) = 68.2^{\circ}$$

Going back to our more refined sketch (inserting the container in which the magnetic field is provided), we can see that:

$$r = (d)\sin\theta$$

= $(.01)\sin(68.2^{\circ})$
= $.0108 \text{ m}$

Using the conservation of energy through the accelerated portion of the flight:

$$\sum_{0} KE_{1} + \sum_{0} U_{1} + \sum_{0} W_{ext} = \sum_{0} KE_{2} + \sum_{0} U_{2}$$

$$0 + gV_{-} + 0 = \left(\frac{1}{2}\right) mv^{2} + (-q)V_{+}$$

 $\Rightarrow v = \left(\frac{2qV_+}{m}\right)^{1/2}$

Determining the radius through which the charge was accelerated out of straight-line motion by the magnetic field is a little trickier.

Examine the sketch. Apparently, the angle between the undeflected line and the actual path is $\boldsymbol{\theta}$.

acceleration

plates [

So going back to our magnetic field function, we can write:

$$B = \frac{mv}{qr}$$

$$\Rightarrow B = \frac{m\left(\frac{2qV_{+}}{m}\right)^{1/2}}{qr}$$

$$\Rightarrow B = \frac{\left(\frac{2mV_{+}}{q}\right)^{1/2}}{r}$$

$$\Rightarrow B = \frac{\left[\frac{2(9.1x10^{-31} \text{ kg})(50x10^{3} \text{ V})}{(1.6x10^{-19} \text{ C})}\right]^{1/2}}{(.0108 \text{ m})}$$

$$= .07 \text{ T}$$

4.)